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Abstract. Knowledge graphs have emerged as an effective tool for managing
and standardizing semistructured domain knowledge in a human- and machine-
interpretable way. In terms of graph-based domain applications, such as embed-
dings and graph neural networks, current research is increasingly taking into ac-
count the time-related evolution of the information encoded within a graph. Algo-
rithms and models for stationary and static knowledge graphs are extended to make
them accessible for time-aware domains, where time-awareness can be interpreted
in different ways. In particular, a distinction needs to be made between the validity
period and the traceability of facts as objectives of time-related knowledge graph
extensions. In this context, terms and definitions such as dynamic and temporal are
often used inconsistently or interchangeably in the literature. Therefore, with this
paper we aim to provide a short but well-defined overview of time-aware knowl-
edge graph extensions and thus faciliate future research in this field as well.
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1. Introduction

Knowledge graphs (KGs) and their integration into domain-specific use cases represent
a topic that has been gaining popularity in recent research. Their inherent information is
usually encoded in the form of triples (h,r, t) =̂ (head,relation, tail) where a node h has
the relation r to another node or attributive literal t. KGs are used to improve the perfor-
mance in areas like question answering [1] and recommendation [2] regarding various
domains, e.g., industrial manufacturing [3] and biomedicine [4]. Furthermore, extension
approaches exist which aim at enriching triples with additional metadata [5,6,7], such as
annotations or timestamps. However, discrepancies regarding terminology can be found
in the literature. For example, the term knowledge graph is often used interchangeably,
although enrichment by metadata usually cannot be assumed without loss of general-
ity. Furthermore, especially in the context of time-aware knowledge graph extensions,
frequently used terms such as dynamic, temporal, and static are applied inconsistently.

Therefore, in this work, the distinction between standard knowledge graphs by
means of stationary sets of triples [8,9] and time-aware KG extensions is elaborated.
Reminiscent, mutable and incremental knowledge graphs are introduced as special cases
of dynamic and temporal KGs. These definitions should ultimately serve to standardize
time-aware KG extensions and thus facilitate future research in this field as well.
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2. Related Work

State of the art knowledge graphs as sets of triples with entries (h,r, t) already provide a
limited possibility of expressing time-awareness by assigning additional time-related an-
notations to nodes [9]. For example, the information that the European Union (EU) was
founded in 1951 can be encoded by (EU, f ounded,1951) where 1951 is an attributive
timestamp literal, in this case the corresponding year. However, time-related node anno-
tations are not sufficient to encode the information that the United Kingdom (UK) joined
the EU in 1973 since the year 1973 refers to the edge (UK,member,EU) and not to a
single node. To provide the encoded triples with further information, general approaches
like RDF* [5] already exist which assign additional metadata to the edges. In the fol-
lowing, we restrict ourselves to time-related metadata in order to standardize time-aware
KG extensions. In fact, there are already numerous works dealing with this problem, but
most of them consider successive applications such as KG embeddings [6,10] or graph
completion [11,12]. However, although knowledge graphs with additional time-related
metadata within the edges are always considered, there is no generalized definition for
this kind of encoding. As most of these approaches refer to such graphs as temporal KGs,
we adopt this notion as well. In particular, temporal extensions represent a local form of
time-awareness as timestamps are added to each edge individually.

Additionally, several works exist which consider entire knowledge graphs as being
non-stationary, i.e. dynamic, which is to be interpreted as global time-awareness. Simi-
larly to temporal KGs, these apply methods for standard knowledge graphs to dynamic
KGs to make them accessible for areas such as KG embeddings [13,14] and KG comple-
tion [15]. However, these approaches do not attempt to adapt the original methods to en-
riched knowledge graphs. Rather, they try to make previous models and results reusable
in an efficient way so that, for example, full retraining of an embedding model is not
required after the information encoded within the knowledge graph is updated.

To the best of our knowledge, no general definitions of temporal or dynamic KGs ex-
ist yet. Usually, respective assumptions are similar but not identical. Furthermore, there
are several works where these terms are used interchangeably, inversely, or not at all. Fi-
nally, there is no well-defined approach for combining local and global time-awareness.

3. Preliminaries

In this work, the term knowledge graph is used as a generalized notion for approaches
that manage semistructured data based on formal conceptualizations, e.g., ontologies, as
well as collections of instantiation rules indicating the validity of a graph’s topology,
i.e., of its inherent edges. However, this generalization is based on the most common
implementation form of a knowledge graph as a set of triples, which will be referred to
as a standard KG. Furthermore, ontologies which conceptualize a domain by means of
triples (h,r, t) are referred to as static ontologies as they allow no further extensions of
the triple structure such that facts are to be regarded as final and static. Moreover, a KG
may be interpreted in both stationary and dynamic ways, i.e., we allow the consideration
of time-related graph evolutions with respect to a set of timestamps T . We assume T
to be of a strict order, so that for τ,τ ′ ∈ T with τ �= τ ′ either τ < τ ′ or τ ′ < τ follows.
Therefore, for τ < τ ′ the timestamp τ occurred before τ ′. In this context, we also define
the closure T := T ∪{−∞,∞} such that −∞ < τ < ∞ holds for all τ ∈ T .
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Figure 1. Overview of the time-aware knowledge graph extensions regarding possible combinations of local
extensions (edge timestamps) and global extensions (consideration of multiple consecutive versions of a graph).

4. Time-Aware Knowledge Graph Extensions

In this section, a generalized framework for extending KGs with time-awareness is in-
troduced, which intends to cover existing and future work in this field. As indicated in
Section 2, we are concerned with local extensions, i.e., enriching edges with timestamps,
as well as global extensions, i.e., considering the evolution of a graph. The overview in
Figure 1 shows the different types of time-aware KGs introduced in this paper. Accord-
ing to the most common terms in the literature, we refer to locally extended KGs as tem-
poral and globally extended KGs as dynamic. If the respective extension is not consid-
ered, then the KG is referred to as static and/or stationary. For example, a standard KG is
static because all edges in the graph must be interpreted as static triples, and stationary
because it models domain knowledge with respect to a fixed point in time.

We investigate different types of KG extensions. A reminiscent KG models the do-
main knowledge for a fixed point in time, but is provided with memory in the form of
additional edge timestamps. Regarding a fixed timestamp, mutable KGs do not contain
this memory, but can be observed over the time period T . As a combination, incremental
KGs are equipped with additional edge metadata and are observable with respect to T .

4.1. Stationary Knowledge Graphs

Standard KGs represent special cases of static and stationary KGs as they are stationary
instantiations of static ontologies O = (C,L,R,ρ). Such ontologies include concepts C,
i.e. entity types, attributive literals L, as well as attributive and contextual relations in R.
In addition, ρ denotes the instantiation rules of O which assess whether triples are valid
or not, based on the triples themselves and the topology of the graph. For example, a
member of the EU must necessarily be a country. Given such an ontology O, a triplestore
including a set of entites V and a set of edges E with entries (h,r, t) is called a standard
knowledge graph G = (V,E) if h ∈ V , r ∈ R, and t ∈ V or t ∈ L holds such that the
validity of triples can be assessed using the rules in ρ . In some works, blank nodes are
considered as head or tail nodes, but we omit this here without loss of generality, since
they can always be added by including the concept of a blank node in C. To extend the
facts in G with additional timestamps, an adaptation of static ontologies is required.

Definition 1 (Temporal Ontology) Given a time set T as well as a standard ontology
O = (C,L,R,ρ), a temporal ontology is defined as O+ = (C,L,R,T ,ρ+) such that
triples (h,r, t) are replaced by quintuples (h,r, t,τstart ,τend) with additional timestamps
τstart ,τend ∈ T , defining the start and end of validity of an edge. Further, the instantiation
rules ρ are extended by time-related rules which determine the validity of quintuples.
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Regarding the additional time-related rules in ρ+, there are some obvious rules, such
as the one that τstart ≤ τend should always hold. To ensure this rule also for quintuples
for which no additional time-related information is available, we assume the previously
introduced closure T , so that τstart =−∞ or τend =∞ may be used if necessary. By means
of T = /0 and T = {−∞,∞}, one also recognizes that static ontologies represent special
cases of temporal ontologies. Therefore, with respect to temporal ontologies, we always
assume T �= /0. Accordingly, a real-world instantiation of a temporal ontology for a fixed
timestamp is called a reminiscent knowledge graph which is defined as follows.

Definition 2 (Reminiscent Knowledge Graph) Let O+ = (C,L,R,T ,ρ+) be a tempo-
ral ontology. Then a quintuple store including entites V and a set of edges E+ with en-
tries (h,r, t,τstart ,τend) is a reminiscent knowledge graph G+ = (V,E+) if h ∈V , r ∈ R,
t ∈V or h ∈ L, and τstart ,τend ∈ T holds and there are no violations of the rules in ρ+.

Similar graph implementations as special cases of the above definition are already
used in existing works, for example to optimize KG embeddings with temporal aspects
or to integrate past information in a KG and successive applications [10,12]. Since often
only single timestamps τstart are considered, we introduce the notion of semi-temporality
which is present if τend = ∞ holds for all quintuples. Accordingly, we introduce semi-
reminiscent KGs as special cases of reminiscent KGs. However, in this case, the deacti-
vation of an edge inevitably leads to its deletion, i.e., only active edges are present.

4.2. Dynamic Knowledge Graphs

Unlike standard and reminiscent knowledge graphs as stationary domain representations,
many KG applications are meant to go beyond the original encoding of semistructured
data for a fixed point in time. For example, KG embeddings and graph neural networks
are supposed to be adaptive such that they can be efficiently reused after the topology
of the KG is updated [13,14]. Therefore, it is necessary to consider KG representations
that are dynamic with respect to a set of timestamps T , which justifies the following
definition of a dynamic KG as a mapping from T to an appropriate set of KGs.

Definition 3 (Dynamic Knowledge Graph) We assume a set of timestamps T , a set of
either static or temporal ontologies {Oτ : τ ∈ T } with corresponding sets Gτ of all sta-
tionary KGs according to Oτ and we define G :=

⋃
τ∈T Gτ . Then, a dynamic knowledge

graph is defined as a mapping Γ : T →G such that Γ(τ) ∈Gτ holds for all τ ∈ T .

Apparently, Definition 3 does not specify whether static or temporal ontologies are con-
sidered. Figure 1 suggests that this may result in different types of time-aware KG ex-
tensions, which we discuss in the following. First, we assume static ontologies.

Definition 4 (Mutable Knowledge Graph) A dynamic knowledge graph Γ is called a
mutable knowledge graph if the underlying ontologies {Oτ : τ ∈T } are static ontologies
and Γ(τ) yields a standard knowledge graph for all τ ∈ T .

A mutable KG thus offers the possibility to infer when triples were added to the graph,
i.e., when the inherent information became accessible. However, the stationary images
Γ(τ) for τ ∈ T are static and therefore do not contain information about the period of
validity of an edge. Thus, regarding time-awareness in general, one has to distinguish
between the validity and the accessibility of facts to the knowledge graph.
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Definition 5 (Incremental Knowledge Graph) A dynamic KG Γ is called an incremen-
tal knowledge graph and is denoted as Γ+ if the underlying ontologies {Oτ : τ ∈ T } are
temporal ontologies and Γ+(τ) yields a reminiscent KG for all τ ∈ T .

An incremental KG thus offers the possibility to trace the accessibility of facts as well
as their validity. Since deactivated edges are kept in the graph, for timestamps τ,τ ′ ∈ T
with τ < τ ′, Γ+(τ ′) contains at least as many facts as Γ(τ). Therefore, according to the
notion of semi-temporality from Section 4.1, we also allow semi-incremental KGs as
special cases of incremental KGs whose stationary images Γ+(τ) are semi-reminiscent,
i.e., they only contain active facts. However, assuming the prior existence of an edge, the
time of its deletion is reconstructable by inspecting the previous versions of the graph.

4.3. Application Example

As indicated in Section 2, standard KGs are not sufficient to encode temporally extended
facts like the membership of the UK in the EU from 1973 to 2020. Therefore, reminis-
cent KGs with additional timestamps τstart ,τend ∈ T are considered so that the fact is en-
codable as (UK,member,EU,1973,2020). In addition, if only active, i.e. currently valid
edges are to be contained in the graph, a semi-reminiscent graph can be implemented.

However, stationary KGs do not not trace the time-related evolution of the informa-
tion encoded within a graph, since they only contain the knowledge available for a fixed
timestamp. Therefore, dynamic KGs are introduced in this paper to account for such evo-
lutions. In Table 1, the different dynamic extension types are exemplified. Thus, in 2012,
the information that the UK is a member of the EU since 1973 is added to each KG.
However, the year 1973 is only explicitly encodable in the (semi-)incremental KGs such
that this additional information is still available in 2020. Due to its staticness, this is not
the case for the mutable KG. After the Brexit in 2020, the information about the previ-
ous membership is removed from the mutable and the semi-incremental KG, since they
only contain active edges. In the incremental KG, on the other hand, the fact is updated
by means of the new timestamp τend = 2020, making it available for future timestamps
τ > 2020 as well. However, this also leads to a continual expansion of the graph.

4.4. Time-Awareness in Existing Knowledge Graphs and Applications

Many existing and established knowledge graphs such as DBpedia, YAGO, and Wikidata
already satisfy certain requirements for time-awareness. Indeed, KGs are mostly based
on dynamic domains such that a versioning or the implementation and utilization of a
SPARQL update endpoint results in a dynamic KG. However, these dynamics are mostly
not explicitly considered, but rather the stationary images of the graphs. In particular,
successive applications, such as embeddings and graph neural networks, are developed
or trained for stationary images without taking the underlying dynamics into account.

Table 1. Application of dynamic, i.e., mutable (m), semi-incremental (s-i) and incremental (i) KG extensions.

2012 ... 2020 2021

m (UK,member,EU) (UK,member,EU) -
s-i (UK,member,EU,1973,∞) (UK,member,EU,1973,∞) -
i (UK,member,EU,1973,∞) (UK,member,EU,1973,∞) (UK,member,EU,1973,2020)
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5. Summary

This work contributes to the Semantic Web community by providing a generalized
framework for time-aware knowledge graph extensions. Current research shows that fur-
ther progress is needed to establish knowledge graphs in non-stationary and non-static
domains. In this context, some promising approaches already exist that extend or adapt
methods for standard knowledge graphs to make them usable for dynamic or temporal
KGs as well. However, so far, these approaches do not share a common vocabulary to
compare their respective results. The definitions introduced in this work provide this
kind of vocabulary to facilitate the comparison and integration of existing, but also future
works and thus can serve as an accelerator for the desired progress of knowledge graph
implementations and applications in time-aware, i.e., dynamic and temporal domains.
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