
Reasoning about Explanations for Non-validation in SHACL
Shqiponja Ahmetaj2∗ , Robert David4 , Magdalena Ortiz1 ,

Axel Polleres2,3 , Bojken Shehu5 , Mantas Šimkus1
1Technical University of Vienna, Austria

2Vienna University of Economics and Business, Austria
3Complexity Science Hub Vienna, Austria

4Semantic Web Company, Austria
5Polytechnic University of Tirana, Albania

{shqiponja.ahmetaj, axel.polleres}@wu.ac.at, robert.david@semantic-web.com, ortiz@kr.tuwien.ac.at,
bshehu@fti.edu.al, simkus@dbai.tuwien.ac.at

Abstract
The Shapes Constraint Language (SHACL) is a recently stan-
dardized language for describing and validating constraints
over RDF graphs. The SHACL specification describes the
so-called validation reports, which are meant to explain to
the users the outcome of validating an RDF graph against a
collection of constraints. Specifically, explaining the reasons
why the input graph does not satisfy the constraints is chal-
lenging. In fact, the current SHACL standard leaves it open
on how such explanations can be provided to the users. In
this paper, inspired by works on logic-based abduction and
database repairs, we study the problem of explaining non-
validation of SHACL constraints. In particular, in our frame-
work non-validation is explained using the notion of a repair,
i.e., a collection of additions and deletions whose application
on an input graph results in a repaired graph that does sat-
isfy the given SHACL constraints. We define a collection of
decision problems for reasoning about explanations, possibly
restricting to explanations that are minimal with respect to
cardinality or set inclusion. We provide a detailed character-
ization of the computational complexity of those reasoning
tasks, including the combined and the data complexity.

1 Introduction
The SHApe Constraint Language (SHACL) is a recently
standardized language for expressing constraints on RDF
graphs. It is the result of industrial and academic efforts to
provide solutions for checking the quality of RDF graphs
and for declaratively describing (parts of) their structure.
We recommend (Gayo et al. 2017) for an introduction to
SHACL and it close relative ShEx. The SHACL standard
provides a syntax for writing down constraints, and de-
scribes the way RDF graphs should be validated against
such constraints. However, some aspects of validation
are not completely specified in the standard, like the se-
mantics of validation for constraints with cyclic dependen-
cies. To address these shortcomings, several formalizations
have emerged recently, which describe SHACL in terms of
logic-based languages with clear semantics, like first-order
logic (Corman, Reutter, and Savkovic 2018) and logic pro-
gramming (Andresel et al. 2020). Connections between

∗Work done while at the Technical University of Vienna.

SHACL and Description Logics (DLs), which underlie the
OWL standard for writing ontologies, have also been estab-
lished (Leinberger et al. 2020). The key difference between
SHACL and DLs is that SHACL makes the closed-world
assumption (CWA), while DLs use the open-world assump-
tion (OWA). To understand the difference, one can think
of RDF graphs equipped with SHACL constraints as DL
knowledge bases in which all roles and some concept names
are treated as closed predicates (see (Franconi, Ibáñez-
Garcı́a, and Seylan 2011; Lutz, Seylan, and Wolter 2013;
Ngo, Ortiz, and Simkus 2016)).

In SHACL, the basic computational problem is to check
whether a given RDF graph G validates a SHACL docu-
ment (C, T), where C is a specification of validation rules
(constraints) and T is a specification of nodes to which the
validation rules should apply (targets). In order to make
SHACL truly useful and widely accepted, we need auto-
mated tools that implement not only validation, which re-
sults in “yes” or “no” answers, but also support the users in
their efforts to understand the reasons why a given graph val-
idates or not against a given document. The SHACL specifi-
cation stresses the importance of explaining validation out-
comes and introduces the notion of validation reports for
this purpose. If an input graph does validate against a doc-
ument, the standard has clear guidance how the validation
reports should look like. However, the situation is different
when the graph does not validate. The principles of valida-
tion reports in case of non-validation are left largely open
in the standard, which specifies little beyond requiring that
the node and constraint violated are indicated. It is not hard
to see that, in general, there may be a very large number of
possible reasons for a specific validation target to fail, and it
is far from obvious what should be presented to the user in
validation reports. This is precisely the topic of our study.

In this paper, we advocate explanations in the style of
database repairs (Arenas, Bertossi, and Chomicki 1999)
as one concrete way to provide explanations for the non-
validation of SHACL constraints. This approach is closely
related to subareas of KR&R like abductive reasoning,
model-based diagnosis and counterfactuals, which have re-
ceived very significant attention in last decades and ap-

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

12

plied to a range of similar problems requiring explanatory
services (see, e.g., (Eiter and Gottlob 1995; Van Harme-
len, Lifschitz, and Porter 2008; Calvanese et al. 2013;
Ceylan et al. 2020)).

The main goal of this paper is to formalize the notion of
explanations for SHACL, to define a collection of reasoning
tasks for exploring explanations, and to characterize their
computational complexity. In a nutshell, the contributions
of this paper are as follows:
◦ To explain non-validation of a SHACL document

(C, T) by an RDF graph G, we introduce the notion of a
SHACL Explanation Problem (SEP). A solution to a SEP
is a pair (A,D) that describes a collection A of facts to be
added to G and a collection D of facts to be deleted from
G, so that the resulting graph does validate the document
(C, T). We consider natural preference orders over explana-
tions, and study also explanations that are minimal w.r.t. set
inclusion or w.r.t. cardinality. We illustrate the use of expla-
nations with some examples.
◦ We define a collection of inference services for reason-

ing about explanations for non-validation. We start with the
basic tasks of recognizing whether a given candidate is in-
deed a (preferred) explanation, and deciding whether a (pre-
ferred) explanation exists. We also define the problems of
checking whether a given atom is relevant (resp., necessary)
as an addition or as deletion in some explanation (resp., all
explanations). These task are reminiscent of basic reasoning
problems in logic-based abduction (Eiter and Gottlob 1995).
◦ We study the computational complexity of the intro-

duced reasoning tasks, characterizing both combined and
data complexity. Our results range from tractability to com-
pleteness for the second level of the polynomial hierarchy.
◦ After studying the general setting, we turn our attention

to non-recursive SHACL constraints. We show that with one
exception, reasoning about explanations in the presence of
non-recursive constraints does not become easier in terms
of computational complexity. The exception is the problem
of recognizing an explanation, which becomes tractable in
the absence of a preference order. As a side result we show
that SHACL validation in the presence of non-recursive con-
straints is P-complete.
◦ Finally we consider a generalization of SEPs with re-

stricted explanation signatures. This useful feature allows,
e.g., to specify that some classes and properties are read-
only, prohibiting deletions from them during explanations.
Also for this setting we establish a collection of complexity
results, including the case of non-recursive constraints.

2 Preliminaries
We introduce here SHACL and the notion of validation by
RDF graphs, the most important task in SHACL. We fol-
low the formalization from (Andresel et al. 2020), which
abstracts away from the concrete syntax of RDF and ignores
concrete domains, IRIs, literals, and blank nodes.

Data Graphs. SHACL uses the term “data graph” for an
RDF graph that is to be validated against some constraints.

Let N, C, and P denote countably infinite, mutually disjoint
sets of nodes, class names, and property names, respectively.
A data graph G is a finite set of atoms of the form B(c) and
p(c, d), where B ∈ C, p ∈ P, and c, d ∈ N. The set of
nodes appearing in G is denoted with V (G).

Syntax of SHACL We assume a countably infinite set S of
shape names, disjoint from N ∪C ∪P. A shape atom is an
expression of the form s(a), where s ∈ S and a ∈ N. A path
expression E is a regular expression built using the usual
operators ∗, ·, ∪ from symbols in P+ = P ∪ {p− | p ∈ P}.
If p ∈ P, then p− is the inverse property of p. A (complex)
shape is an expression φ obeying the syntax:

φ, φ′ ::= > | s | B | c | φ ∧ φ′ | ¬φ |≥n E.φ | E = E′,

where s ∈ S, B ∈ C, c ∈ N, n is a positive integer, and E,
E′ are path expressions.

In what follows, we write φ∨ φ′ instead of ¬(¬φ∧¬φ′),
∃E.φ instead of ≥1 E.φ, and ∀E.φ instead of ¬ ≥1 E.¬φ.

A (shape) constraint is an expression s↔ φ where s ∈ S
and φ is a possibly complex shape. For example, the con-
straint FamousSinger ↔ ∃singerOf.FamousSong specifies
that a node c validates the shape name FamousSinger ex-
actly when c is the singer of at least one famous song.

In SHACL, targets are used to prescribe that certain
nodes of the input data graph should validate certain shapes.
W.l.o.g. we consider targets to be shape atoms of the form
s(a), where s ∈ S and a ∈ N, stating that the shape name s
must be validated at the node a of the input data graph. The
SHACL specification allows for a richer specification of tar-
gets, e.g., to state that all nodes of a certain class must vali-
date a certain shape name, but these do not affect our results
(see Section 6 for a discussion).

SHACL also specifies the notion of shape document,
which is simply a pair (C, T), where (i) C is a set of con-
straints such that each shape name appearing in C occurs
exactly once on the left-hand side of a constraint in C, and
(ii) T is a set of targets.

Evaluation of complex shapes The evaluation of a shape
expression φ is given by assigning nodes of the data graph to
(possibly multiple) shape names. More formally, a (shape)
assignment for a data graphG is a set I = G∪L, where L is
a set of shape atoms such that a ∈ V (G) for each s(a) ∈ L.
The evaluation of a (complex) shape w.r.t. an assignment I
is given in terms of a function J·KI that maps a (complex)
shape expression φ to a sets of nodes, and a path expression
E to a set of pairs of nodes. We refer to Table 1 for details on
the evaluation of the various operators in complex shapes.

Validation In this paper, for validation we consider the se-
mantics proposed in (Corman, Reutter, and Savkovic 2018),
the first work to formalize the semantics of validation for
SHACL in a logic-based language. Assume a SHACL doc-
ument (C, T) and a data graph G such that each node that
appears in C or T also appears in G. Then, an assignment
I for G is a (supported) model of C if JφKI = sI for all
s ↔ φ ∈ C. The data graph G validates (C, T) if there ex-
ists an assignment I = G∪L forG such that (i) I is a model
of C, and (ii) T ⊆ L. The VALIDATION problem consists

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

13

J>KI = V (I) JcKI = {c} JBKI = {c | B(c) ∈ I}

JE ∪ E′KI = JEKI ∪ JE′KI JpKI = {(a, b) | p(a, b) ∈ I}

JE · E′KI = JEKI ◦ JE′KI Jp−KI = {(a, b) | p(b, a) ∈ I}

JE∗KI = {(a, a) | a ∈ V (I)} ∪ JEKI ∪ JE · EKI ∪ · · ·

JsKI = {c | s(c) ∈ I}

J¬φKI = V (I) \ JφKI Jφ1 ∧ φ2KI = Jφ1KI ∩ Jφ2KI

J≥nE.φKI = {c | |{(c, d) ∈ JEKI and d ∈ JφKI}| ≥ n}

JE = E′KI = {c | ∀d : (c, d) ∈ JEKI iff (c, d) ∈ JE′KI}

Table 1: Evaluation of complex shapes

in determining whether G validates the SHACL document
(C, T). It can be solved in non-deterministic polynomial
time by guessing an assignment, and then checking that it is
a model; this is in fact worst case optimal.
Theorem 1 ((Corman, Reutter, and Savkovic 2018)). VAL-
IDATION is NP-complete in data and combined complexity.

Here and in the remainder of the paper the combined com-
plexity is measured in the combined size of the input param-
eters, while data complexity is measured in the size of G
only, i.e., we assume the size of the rest of the input param-
eters is bounded by a constant.
Example 1. Consider (C, T) and the data graph G:

C ={Human↔ HumanBeing ∨ ∃hasRelative.Human}

T ={Human(Ann),Human(Ben)},

G ={hasRelative(Ann,Ben),HumanBeing(Ben)}
Intuitively, the single statement in C tells us that a node c
validates the shape name Human iff c belongs to the class
HumanBeing or it has a hasRelative connection to a node
c′ that in turn validates the shape name Human. Intuitively,
the two atoms in T tell us that our target is to check that
Ann and Ben can be consistently assumed to be human.
Clearly, G validates (C, T), as witnessed by the assignment
I = G ∪ {Human(Ann),Human(Ben)}.

We note that the above semantics can be considered as
based on classical first-order logic, extended with predicates
whose extension is fixed (closed). More specifically, we can
observe a connection to terminologies expressed in a De-
scription Logic (DL) extended with closed predicates (Fran-
coni, Ibáñez-Garcı́a, and Seylan 2011; Lutz, Seylan, and
Wolter 2013). If we omit the path equality construct and
all complex path expressions except the inverse properties,
then (complex) shapes correspond to concept expressions in
the DLALCOIQ, where both shape names and class names
are seen as concept names. A data graph or a target set can
be directly viewed as an ABox. A constraint set C simply
corresponds to a terminology TC that contains a definition
s ≡ φ for each s ↔ φ ∈ C. Then the validation of a data
graph G against (C, T) corresponds to checking the satis-
fiability of a DL knowledge base (TC , G ∪ T) where only

concept names corresponding to shape names are open, and
all other concept names and role names are closed.

3 Explaining Non-Validation in SHACL
In this section, we formalize the idea of using repairs to ex-
plain non-validation of a SHACL document by a data graph.
Explanations are given in terms of sets of facts that need to
be added or removed from the original data graph, so that
the resulting data graph validates the document.
Definition 1. LetG be a data graph, let (C, T) be a SHACL
document, and let the set of hypotheses H be a data graph
disjoint from G. Then Ψ = (G,C, T,H) is a SHACL Ex-
planation Problem (SEP). An explanation for Ψ is a pair
(A,D), such that D ⊆ G, A ⊆ H , and (G \ D) ∪ A vali-
dates (C, T).

We illustrate our notion of explanations for SHACL non-
validation with an example.
Example 2. Consider a SEP Ψ = (G,C, T,H), where:

C ={Teacher↔ ∃teaches .>,
Student↔ ∃enrolledIn.Course ∧ ¬Teacher}

T ={Student(Ben),Teacher(Ann)}

G ={enrolledIn(Ben,C1), teaches(Ann,Ben),

teaches(Ben,Ben), teaches(Ann, Peter)}
H ={Course(C1),Course(C2)}

The constraints state that each Teacher must teach some-
one, and each Student must be enrolled in some course and
must not comply with the shape Teacher. Note that Teacher
and Student are shape names, enrolledIn is a property
name, and Course is a class name. The data graph G val-
idates (C, {Teacher(Ann)}), but does not validate (C, T).
A possible explanation for non-validation is that G is miss-
ing the fact that C1 is a Course , and moreover, it con-
tains the possibly erroneous fact that teaches(Ben,Ben).
Thus, validation is ensured by repairing G with the ex-
planation (A,D), where A = {Course(C1)} and D =
{teaches(Ben,Ben)}.

Note that the hypothesis set H in Definition 1 allows to
introduce during repairs a limited number of nodes not oc-
curring in the input set of constraints and data graph. This is
useful in handling constructs such as existential restrictions
and negation in constraints, which may sometimes enforce
explanations to add atoms over fresh nodes. Furthermore,
constructs such as negation or “at most” restrictions may re-
quire explanations to delete facts from the graph in order to
ensure validation of the targets. Note that we do not make
any validity assumptions on the input SEP, i.e. the data graph
may already validate the input SHACL document, in which
case (∅, ∅) would be a valid explanation.

Preferences among Explanations Considering all possi-
ble explanations for a SEP may not be desirable as there
may be a large number (possibly exponentially many) of
different explanations, and redundant facts that are not rel-
evant for regaining validity may be present in those expla-
nation. For instance, if the given set of hypothesis is rich

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

14

enough, explanations may delete the entire input data graph
and construct another one from the hypothesis atoms val-
idating the SHACL document. To focus only on a subset
of desirable solutions, we consider preference relations over
explanations, given by a pre-order �, that is, a reflexive and
transitive relation on the set of explanations. We consider
two kinds of preferred explanations under two typical pref-
erence orders: subset-minimal (⊆), and cardinality-minimal
(≤) explanations.

Definition 2. Let Ψ be a SEP, and let (A,D), (A′, D′) be
two explanations for Ψ. We write (A,D) ⊆ (A′, D′) ifA′ ⊆
A and D′ ⊆ D, and we write (A,D) ≤ (A′, D′) if |A| +
|D| ≤ |A′|+ |D′|.

A preferred explanation of a SEP Ψ under the pre-order
�, called �-explanation, is an explanation ξ such that there
is no explanation ξ′ for Ψ with ξ′ � ξ and ξ 6� ξ′.

Observe that cardinality-minimal explanations are also
subset-minimal, but the converse does not hold in general.

Decision Problems We next define the main decision
problems for explanations, in the style of logic-based ab-
duction (Eiter and Gottlob 1995; Calvanese et al. 2013).

Definition 3. Let Ψ = (G,C, T,H) be a SEP, let A,D be
data graphs, let α be an atom in G ∪ H , and let � be a
(possibly empty) preorder. We define six decision problems:

• �-ISEXPL: is (A,D) a �-explanation for Ψ?

• �-EXIST: does there exist a �-explanation for Ψ?

• �-NECADD: is α a �-necessary addition for Ψ, that is
does α occur in A in every �-explanation (A,D) for Ψ?

• �-NECDEL: is α a �-necessary deletion for Ψ, that is
does α occur in D in every �-explanation (A,D) for Ψ?

• �-RELADD: is α a �-relevant addition for Ψ, that is
does α occur in A in some �-explanation (A,D) for Ψ?

• �-RELDEL: is α a�-relevant deletion for Ψ, that is does
α occur in D in some �-explanation (A,D) for Ψ?

We omit � from the name of decision problems when �
is empty, that is, there is no preference order, and write (�)
when considering the variants with and without �. In what
follows we use � as a place holder for both ⊆ and ≤.

ISEXPL is sometimes called the recognition problem,
which checks whether a given candidate explanation is in-
deed an explanation for the input SEP. Existence of an ex-
planation, EXIST, is a classical problem with a ”yes” answer
if there exists an explanation for the input SEP and ”no” oth-
erwise. For necessity and relevance of an atom, i.e. whether
it occurs in all or some explanations, we separated the prob-
lems for additions and deletions. Testing whether an atom is
a necessary addition or deletion provides valuable insights
to the user that the particular atom is immediately related to
the non-validation of the target shape atoms. That an atom
appears in all explanations as a necessary deletion from the
input data graph may also mean that it clashes with the con-
straints preventing the validation of any possible target set.

Note that an explanation ξ = (A,D) provides the sym-
metric difference A ∪ D between a data graph G and the
result G′ = (G \ D) ∪ A of applying ξ to G, and that the

application of a ⊆-explanation to a data graph G results in a
repair G′ of G, as known from the seminal paper on repairs
for databases (Arenas, Bertossi, and Chomicki 1999).

We present some examples to illustrate necessary addi-
tions and deletions as part of �-explanations.
Example 3. Recall the explanation (A,D) from Exam-
ple 2, and observe that for any other explanation (A′, D′)
for Ψ it must be the case that A ⊆ A′ and D ⊆
D′. It follows that Course(C1) is a �-necessary ad-
dition for Ψ and the atom teaches(Ben,Ben) is a �-
necessary deletion for Ψ. If we change the hypothesis set
to H = {Course(C1), enrolledIn(Ben,E),Course(E)},
then Course(C1) is not a ⊆-necessary addition for Ψ be-
cause we introduce a new explanation that adds A′ =
{enrolledIn(Ben,E),Course(E)}, avoiding the addition
of Course(C1). Note that even with the new H , the
atom Course(C1) remains a ≤-necessary addition and
teaches(Ben,Ben) is still a �-necessary deletion.

We now illustrate relevant additions and deletions.
Example 4. Consider the SEP Ψ from Example 2, which
we modify to the SEP Ψ′ = (G′, C ′, T,H), where C ′ is
obtained from C by substituting the first constraint with
Teacher ↔ ∃teaches .Person , and letting G′ = G ∪
{Person(Ben), enrolledIn(Ben,C1)}. There are four ≤-
explanations (Ai, Di) with i ∈ [1, 4] for Ψ′:

A1 ={Course(C1)}, D1 = {teaches(Ben,Ben)}.
A2 ={Course(C1)}, D2 = {Person(Ben)}.
A3 ={Course(C2)}, D3 = {teaches(Ben,Ben)}.
A4 ={Course(C2)}, D4 = {Person(Ben)}.

The atoms Course(C1) and Course(C2) are both ≤-
relevant additions for Ψ′. Note that Course(C1) is
not anymore a ≤-necessary addition for Ψ′ since there
are ≤-explanations where Course(C1) does not appear,
e.g., (A3, D3). Note also that teaches(Ben,Ben) is not
anymore a ≤-necessary deletion for Ψ′, since there are
≤-explanations where teaches(Ben,Ben) does not ap-
pear, e.g., (A2, D2). The atoms teaches(Ben,Ben) and
Person(Ben) are both ≤-relevant deletions for Ψ′. Note
that the statements here hold also if we replace “≤” by “⊆”.

4 Complexity of Decision Problems
We now investigate the combined and data complexity of the
decision problems for SEPs presented in Definition 3. We
start by establishing some relations between these problems.
Proposition 1. A SEP has an explanation iff it has a ⊆-
minimal explanation iff it has a ≤-minimal explanation.

The following proposition also allows us to transfer com-
plexity bounds between decision problems:
Proposition 2. Assume a complexity class C. The following
are true for both combined and data complexity:
1. NECADD is C-complete iff NECDEL is C-complete iff

EXIST is co C-complete.
2. ⊆-NECADD is C-complete iff NECADD is C-complete iff
⊆-NECDEL is C-complete iff NECDEL is C-complete.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

15

3. RELADD is C-complete iff RELDEL is C-complete iff
EXIST is C-complete.

We can show that rather simple reductions between the
problems exist. For example, to reduce NECADD to the co-
problem of EXIST, assume a SEP Ψ = (G,C, T,H) and
atom α that is a necessary addition for Ψ. Here, we show
the reduction for the case where α has the form B(a). We
construct a SEP Ψ′ = (G,C ′, T ′, H ′) that forces B(a) to
not be added, by setting C ′ = C ∪ {s ↔ B′ ∧ ¬B}, T ′ =
T∪{s(a)}, andH ′ = H∪{B′(a)}, for a fresh shape name s
and fresh class name B′ not occurring in Ψ. Then, B(a) is a
necessary add for Ψ iff Ψ′ has no explanation. The converse
reduction is also easy. Let Ψ = (G,C, T,H) be a SEP. Then
Ψ does not admit an explanation iff α is a necessary add for
Ψ′ = (G,C, T,H ′), where H ′ = H ∪ {α} and α is an
arbitrary fresh atom.

Note that for the data complexity results, we need reduc-
tions that map the static part of the input instance to a static
part of the target instance in a data independent way.

4.1 Complexity Results
We establish the data and combined complexity of the prob-
lems. Since the bounds we obtain for both complexity mea-
sures coincide, we only need to show the upper bound for
combined and the lower bound for data complexity.

We start with the problem of recognizing explanations.

Theorem 2. For both data and combined complexity:

1. ISEXPL is NP-complete, and
2. ⊆-ISEXPL and ≤-ISEXPL are DP-complete.

Sketch. For the upper bound of ISEXPL, to recognize
whether (A,D) is an explanation for Ψ = (G,C, T,H), we
need to check that: 1) A ⊆ H , and D ⊆ G, which can be
done in linear time in the size ofG andH and 2) that the data
graph resulting from applying (A,D) to G validates (C, T),
that is, a validity check feasible in NP. NP-hardness in data
complexity holds by Theorem 1 since VALIDATION is a spe-
cial case of ISEXPL where the candidate pair is (∅, ∅).

The DP membership with preferences is inferred from
the following simple algorithm, which checks that the given
(A,D): (1) is indeed an explanation for Ψ, and (2) is (⊆
or ≤) minimal. Step (1) corresponds to solving ISEXPL,
and (2) amounts to guessing a (subset or cardinality) smaller
candidate and solving the co-problem ISEXPL. The guess is
polynomial since it is bounded by the size of G and H .

It is left to argue the DP-hardness in data complexity; we
argue it for ⊆, but the proof works also for ≤-minimal ex-
planations. We pick an NP-hard problem Q1 and a coNP-
hard problem Q2. For Q1 we take VALIDATION for a given
document (C1, T1). For Q2 we take the co-problem of 3-
colorability NON3COL, that is, to decide whether a given
graph Gc = (V,E) is not colorable with 3 colors (green,
blue, and red). Consider an arbitrary instance of Q1, con-
sisting of G1, and an arbitrary instance G2 = (V,E) of
Q2. We define a SHACL document (C, T) such that for
every instanceG1 of VALIDATION over a fixed (C1, T1) and
every instance G2 of NON3COL, we can construct in poly-
nomial time a data graph G, a set of hypotheses H , and a

tuple (A,D), such that (A,D) is an explanation for Ψ =
(G,C, T,H) iff G1 is a positive instance of VALIDATION
and G2 of NON3COL.

We define G as G1 ∪ Gcol, where Gcol encodes G2 and
contains the atoms: (1) edge(a, b) for each (a, b) ∈ E, and
(2) r(w, a) for each a ∈ V , where w is a fresh node, and r
is a fresh property name. W.l.o.g. we assume (b, a) ∈ E for
each (a, b) ∈ E. The set C is defined as C1 ∪ Ccol, where
Ccol contains the constraints:

red↔∃r− ∧ ¬green ∧ ¬blue ∧ ¬∃edge.red (1)

green↔∃r− ∧ ¬red ∧ ¬blue ∧ ¬∃edge.green (2)

blue↔∃r− ∧ ¬green ∧ ¬red ∧ ¬∃edge.blue (3)
colored↔∀r.(red ∨ blue ∨ green) (4)

valid↔colored ∨B (5)

We use here a fresh class name B, the rest are shape names.
We define T = T1 ∪ {valid(w)} and H = {B(w)}. Finally,
we define the tuple (A,D), whereA = {B(w)} andD = ∅.
We can prove that G2 is not 3-colorable and G1 validates
(C1, T1) iff (A, ∅) is a ⊆-explanation for Ψ.

We now consider the existence of an explanation.
Theorem 3. ⊆-EXIST, ≤-EXIST, and EXIST are NP-
complete in data and combined complexity.

Sketch. By Proposition 1, it suffices to show the claim for
EXIST. The upper bound is shown by simply modifying the
algorithm for VALIDATION: we guess a candidate explana-
tion together with an assignment for the data graph that re-
sults from applying it. Then checking that the assignment
witnesses validation can be done as usual (Corman, Reutter,
and Savkovic 2018).

To show the NP-hardness in data complexity, we reduce
from 3-colorability 3COL. LetG = (V,E) be an instance of
3COL. If we takeGcol as in the proof of Theorem 2 andC ′col
has the constraints (1) to (4) of Ccol above, then we obtain
that G is 3-colorable iff Ψc = (Gcol, C

′
col, {colored(w)}, ∅)

has an explanation of the form (∅, ∅). That is, we have a
reduction from 3COL to to the existence of an explanation
that does not delete any atoms. However, Ψc may also allow
explanations that delete atoms from Gcol, which amounts to
ensuring validation by removing edges from G or leaving
vertices uncolored. Note that in fact we can find an explana-
tion (∅, D) for Ψc by just taking any singleton D ⊆ Gcol .

To obtain a reduction from 3COL to EXIST we transform
Ψc into a Ψ′c = (G,C, T, ∅) whose explanations correspond
to the explanations of Ψc that don’t delete atoms from Gcol .
We explain how this is done for the edge atoms, r atoms
are treated analogously. We also note that the technique is
generic: it shows how to extend any SEP Ψ = (G,C, T,H)
into Ψ = (G′, C ′, T ′, H) with G ⊆ G′ and C ⊆ C ′ and
T ⊆ T ′ in such a way that no elements from a given set
α1, . . . αn of binary atoms are deleted in the explanations
for Ψ′. A similar (but simpler) trick can be used to forbid
the deletion of a given set of unary atoms.

First we use fresh symbols to add to Gcol atoms that
enforce an (arbitrary but fixed) linear order over the non-
deletable atoms edge(a1, b1), . . . , edge(am, bm). We use

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

16

a fresh node ei for each atom edge(ai, bi), a property
name enext and class names Fe and Le , and a property
aux . Let Gord be the set G′ of atoms which contains: a)
enext(ei, ei+1) for each 1 ≤ i ≤ m − 1, b) aux (ei, ai),
aux (bi, ei) for each edge(ai, bi) and c) Fe(e1) and Le(em).

Using fresh shape names goode, edgepath and totaledge,
we add the following constraints Cord :

goode↔aux = aux− · edge−

edgepath↔∃enext .(∃aux ∧ goode ∧ (edgepath ∨ Le))

totaledge↔∃r.(∃aux−.(Fe ∧ goode ∧ edgepath))

An assignment for a graph G′ containing goode(ei) can
only be a model of C ′ if edge(ai, bi) is in G′, that is,
if G′ is not the result of applying an explanation that
deletes edge(ai, bi). Hence, if an assignment containing
{Fe(e1), goode(e1), edgepath(e1)} is a model, then the se-
quence Fe(e1), aux (e1, a1), edge(a1, b1), aux (b1, e1),
enext(e1, e2), . . ., aux (em, am), edge(am, bm),
aux (bm, em), Le(em) is in the graph and no edge atom has
been deleted. It follows that Ψ′c = (Gcol ∪ Gord , C

′
col ∪

Cord , {colored(w), totaledge(w)}, H) has an explanation
iff Ψc = (Gcol, C

′
col, {colored(w)}, H) has an explanation

(A,D) with D ∩ {edge(ai, bi), . . . , edge(am, bm)} =
∅.

Now we study the problems of deciding whether an atom
must be present in all explanations.

Theorem 4. The following results are true in both combined
and data complexity:

1. NECADD, NECDEL, ⊆-NECADD, and ⊆-NECDEL are
coNP-complete, and

2. ≤-NECADD and ≤-NECDEL are P NP
‖ -complete.

Sketch. Item 1 follows from Proposition 1, Proposition 2
and Theorem 3. For≤-NECADD and≤-NECDEL, we show
the upper bound in combined complexity and the lower
bound in data complexity.

For the P NP
‖ membership of both problems, we build on

ideas from (Calvanese et al. 2013). We show here the upper
bound for ≤-NECADD; the arguments for ≤-NECDEL are
analogous. Consider a SEP Ψ = (G,C, T,H) and an atom
α ∈ H (for ≤-NECDEL α must be in D); let m = |G ∪H|.
Note that α is not a ≤-necessary addition for Ψ iff there is
an i ∈ [1,m] such that (a) Ψ has an explanation (A,D) of
size i where α /∈ A, and (b) (A,D) is cardinality-minimal.
We use two auxiliary problems:
• SIZEEPXL: given a SEP Γ, an atom α′, and an integer n′,

decide whether there is an explanation (A,D) for Ψ′ with
α′ /∈ A and |A|+ |D| = n′.

• NOSMALLER: given a SEP Ψ and an integer n′, decide
whether there is no explanation (A′, D′) for Ψ′ such that
|A′|+ |D′| < n′.

SIZEEPXL is in NP and NOSMALLER is in coNP. We
have that α is added in all ≤-explanations of Ψ iff for all
i ∈ [0,m], one of the following holds: (i) Γi = (Ψ, α, i)
is a negative instance of SIZEEPXL, or (ii) Λi = (Ψ, i) is
a negative instance of NOSMALLER. One can traverse the

set S of all Γi, Λi in polynomial time and test (i) and (ii) by
making no more than 2m calls to an NP oracle.

We show the lower bound by a reduction from the P NP
‖ -

complete problem ODDMAX3SAT (Wagner 1987): given a
3-CNF propositional formula ϕ, decide whether there is an
odd integer k ∈ [1, |ϕ|] (where |ϕ| is the number of clauses
in ϕ) such that there exists a truth assignment that satisfies
k clauses, and there is no assignment that satisfies ` > k
clauses. We show the reduction for ≤-NECADD.

We construct a SEP Ψ = (G,C, T,H) and atom α,
where C, T , and α are fixed, such that ϕ is a positive in-
stance of ODDMAX3SAT iff α is a ≤-necessary add for
Ψ = (G,C, T,H). We associate each clause in ϕ with a
node ci and let nodes c1, . . . , cn denote an order over the
clauses. The data graph G contains the atoms F (c1), L(cn)
storing the first and last clause, two auxiliary atoms r(w, c1),
r(cn, w), F (c1), L(cn), and for each propositional variable
pi in ϕ, two atoms N(pi) and isNeg(p̄i, pi). The set of hy-
potheses H contains the atoms:
• hasLit(ci, pij) for each clause ci and each literal pij oc-

curring in ci, where pij = pij if pij is a propositional
variable, and pij = p̄ij if pij is of the form ¬pij ,

• prevBl(ci, ci+1), prevS (ci, ci+1), for each i ∈ [1, n− 1],
• B1(ci), B2(ci), B3(ci) for each i ∈ [1, n], and
• odd(w).
Intuitively, the atoms in H allow us to guess whether the
maximal number of satisfied clauses is odd, and then to
guess, for each clause ci, either:
- an atom hasLit(ci, pij) that witnesses the satisfaction of
the clause, together with an atom prevS (ci, ci+1) that prop-
agates the satisfaction of ci to the next clause ci+1, or
- three ‘blocking’ atoms B1(ci), B2(ci) and B3(ci) and
an atom prevBl(ci, ci+1) that propagates this blocking (i.e.,
non-satisfaction) of ci to the next clause ci+1.
Importantly, blocking a clause needs more atoms than satis-
fying it; this will ensure that in cardinality minimal explana-
tions the number of satisfied clauses is maximized.

The fixed set of constraints C contains:

True ↔N ∧ ¬False False ↔ N ∧ ¬True (6)
satC ↔∃hasLit .(True ∨ (∃isNeg .False)) (7)

blockC ↔B1 ∧B2 ∧B3 (8)
path ↔(satC ∧ ∃prevS .(final ∨ path))∨

(blockC ∧ ∃prevBl .(final ∨ path)) (9)

Odd ↔¬Even ∧ (∃prevBl−.Odd ∨ ∃prevS−.Even) (10)

Even ↔¬Odd ∧ (F ∨ ∃prevBl−.Even ∨ ∃prevS−.Odd)
(11)

evensat ↔(Even ∧ blockC) ∨ (Odd ∧ satC) (12)
oddsat ↔((Odd ∧ blockC) ∨ (Even ∧ satC)) ∧ ∃r.odd (13)

final ↔L ∧ (oddsat ∨ evensat) (14)
satisfied ↔∃r.(F ∧ Even ∧ path) (15)

We let T = {satisfied(w)}, and α = odd(w).
Constraint (7) makes sure that the truth values represented

in an assignment for G make true the clauses that were se-
lected for satisfaction, and Constraints (7) to (9) propagate
forward the (non-)satisfaction of clauses. The shapes Odd

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

17

and Even are used for storing the parity of the total clauses
that have been satisfied up to clause ci: c1 is always even
(by the target and Constraint (15)), and then prevS enforces
the alternation of Even to Odd, while prevBl keeps the same
parity (Constraints (10) and (11)). Finally, constraints (12)
to (14) take into account the last clause in the parity of the
total satisfied clauses, and make sure that it matches the pres-
ence or absence of the atom α = odd(w). Overall, the atom
odd(w) will always be in an explanation if an odd number
k of clauses was made true with a hasLit atom, and this k
will be maximal in the≤-minimal ones (which will all be of
the form (A, ∅), since deleting atoms from G does not help
us satisfy ϕ).

We finally study the problem of deciding whether an atom is
in relevant for some explanation.

Theorem 5. The following results hold both combined and
data complexity,

1. RELADD and RELDEL are NP-complete,
2. ⊆-RELADD and ⊆-RELDEL are ΣP

2 -complete, and
3. ≤-RELADD and ≤-RELDEL are P NP

‖ -complete.

Sketch. By Proposition 2 and Theorem 3 it can be concluded
that the complexity of deciding RELADD and RELDEL is
NP-complete. For the ΣP

2 upper bound of ⊆-RELADD and
⊆-RELDEL, suppose a SEP Ψ = (G,C, T,H) and an atom
α ∈ G ∪ H . We give the following algorithm: (1) Guess a
pair (A,D) with α ∈ A or α ∈ D, and guess an assignment
I for (G \D) ∪A. (2) Check that I is a model of C that in-
cludes T . (3) Call a coNP oracle to check that there is no⊆-
smaller explanation (A′, D′) for Ψ containing α. Steps (1)
and (2) can be done in NP and together with the coNP oracle
show the ΣP

2 membership. The lower bound is shown by a
reduction from the problem of checking whether a variable p
is in a ⊆-minimal model of a 3-CNF propositional formula
ϕ, which is known to be ΣP

2 complete (Eiter and Gottlob
1993). In this reduction the formula is represented as atoms
in the data graph G (of the form hasLit(c, p), hasLit(c, p)
and N(p) for clauses c and propositional variables p, with
other auxiliary atoms), and it is important to make sure that
these atoms are not deleted in explanations. This is achieved
with the technique described in the proof of Theorem 3.

The P NP
‖ upper bound for ≤-RELADD and ≤-RELDEL

can be shown similarly as in the proof of Theorem 4. We
modify the problem SIZEEPXL as follows: decide for a
Γ consisting of a SEP Ψ′, atom α′, and an integer n′,
whether there exists an explanation (A,D) for Ψ′ such that
|A| + |D| = n′ and α′ occurs in A for ≤-RELADD or in
D for ≤-RELDEL. Now, α is added or deleted in some ≤-
explanations of Ψ iff for some i ∈ [0,m], one of the fol-
lowing holds: (i) Γi is a positive instance of SIZEEPXL,
and (ii) Λi is a positive instance of NOSMALLER. For the
lower bound, we use the reduction from ODDMAX3SAT
in the proof of Theorem 4. In particular, it can be shown
that odd(w) is a ≤-necessary add for Ψ iff odd(w) is a ≤-
relevant add for Ψ, thus showing the claim for ≤-RELADD.
Small modifications are needed for ≤-RELDEL.

5 Further Results
In this section, we discuss some further results for a re-
stricted fragment of SHACL and the setting where some re-
strictions are imposed on the signature of explanations.

5.1 Non-Recursive SHACL
An important fragment of SHACL, that is fully described in
the SHACL specification, is non-recursive SHACL. Assume
a set C of constraints. We say a shape name s directly refers
to a shape name s′ in C, if C has a constraint s ↔ φ such
that s′ appears in φ. We say s refers s′ in C, if s directly
refers to s′ in C, or there exists a shape name s′′ such that s
refers to s′′ in C, and s′′ directly refers to s′ in C. A set of
SHACL constraints C is non-recursive if there is no shape
name in C that refers to itself.

In this section, we present some preliminary results for
SEPs over non-recursive SHACL. We observe that the re-
sults for combined complexity do not differ from the recur-
sive case. In particular, the upper bounds can be imme-
diately inferred from the latter. For the lower bounds we
need alternative proofs, as the hardness proofs provided for
data complexity in Section 4 use recursion and cannot be
exploited.

Theorem 6. SEPs over recursive and non-recursive SHACL
have the same combined complexity for (�)-EXIST, (�)-
NECADD, (�)-NECDEL, (�)-RELADD, (�)-RELDEL.

The reductions for the lower bounds are not difficult.
Roughly, for most problems we use an encoding of a 3-CNF
propositional formula ϕ in a set of non-recursive constraints:
the propositional variables of ϕ are viewed as class names
and stored in the set of hypothesis, and the data graph will
be the empty set. We then reduce the problem of check-
ing whether there exists a model of ϕ to deciding expla-
nation existence, and the problem of whether an atom p is
in a ⊆-minimal model of ϕ to deciding ⊆-relevance. For
≤-relevance and ≤-necessity we again use ODDMAX3SAT.
The proof follows similar ideas to that of Theorem 4, but
now we can use one constraint to perform the necessary
checks for each clause of ϕ.

Our next target is the problem of recognizing an explana-
tion in the presence of non-recursive constraints. To show
some of the results, we employ the problem VALIDATION.
We first point out the combined complexity of VALIDATION
in the presence of non-recursive SHACL constraints. The
data complexity of this problem is known to be complete for
NLOGSPACE (Corman et al. 2019), but to our knowledge,
the combined complexity had not been established.

Theorem 7. VALIDATION for non-recursive SHACL is P-
complete in combined complexity.

Proof (Sketch). A polynomial time algorithm is not diffi-
cult: simply compute the extensions of all shape names in
a bottom-up fashion (starting from shape names that do not
depend on other shape names), and then check whether the
targets are contained in the uniquely generated assignment.
Note that in polynomial time we can compute the extension
of a given shape expression in a given graph, a task that we

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

18

need to perform only linearly many times to compute the
extension of all shape names of a given problem instance.

The lower bound can be shown using a reduction from
the problem of checking whether a proposition g belongs to
the least model of a propositional Horn logic program P .
Assume such a program P and a goal proposition g (g is
assumed to occur in P). For every proposition p of P , let
s0
p, . . . , s

k
p be shape names, where k is the number of propo-

sitions in P . Take the graph G = {N(a)}, and let C be the
set of constraints that contains (a) si+1

h ↔ N∧sib1∧· · ·∧s
i
bn

for all rules h ← b1, . . . , nn in P and all 0 ≤ i < k, and
(b) si+1

p ↔ sip for all propositions p in P and all 0 ≤ i < k.
Take the target T = {skg(a)}. It is easy to see that g occurs
in the least model of P iff G validates (C, T).

We now discuss ISEXPL, ⊆-ISEXPL and ≤-ISEXPL.

Theorem 8. The following results are true:

1. ISEXPL is P-complete in combined complexity, and
NLOGSPACE-complete in data complexity.

2. ⊆-ISEXPL and ≤-ISEXPL are coNP-complete in both
data and combined complexity.

Proof (Sketch). The upper bounds are obtained using a sim-
ple algorithm. Given a candidate explanation (A,D) for a
SEP (G,C, T,H), the explanation is applied to G and then
we check if the resulting graph G′ validates (C, T). Note
that applying (A,D) on G is feasible in logarithmic space.
From the complexity of VALIDATION, we then obtain the
upper bounds in point 1. For point 2, we need to check the
non-existence of an explanation that is smaller w.r.t. set or
cardinality inclusion, which trivially belongs to coNP.

The lower bounds in point 1 follow from the fact that
VALIDATION is a special case of ISEXPL. The remaining
coNP lower bound can be shown for ⊆-ISEXPL and ≤-
ISEXPL already in data complexity. We discuss this only
for ⊆-ISEXPL. We provide a reduction from the problem of
checking whether a set of propositional variables M is a ⊆-
minimal model of a 3-CNF formula ϕ. We create the follow-
ing instance of⊆-ISEXPL. We start with Ψ = (G,C, T,H).
The data graph G contains the following atoms:
• Clause(c) for every clause c in ϕ, where Clause is a fresh

class name.
• hasClause(root , c) for each clause c in ϕ, where

hasClause is a fresh property name,
• N (p), isNeg(p, p) for each propositional variable p oc-

curring in ϕ, where N is a fresh class name,
• hasLit(c, p) for each clause c in ϕ and each propositional

variable p that occurs positively in c, and
• hasLit(c, p) for every clause c in ϕ and every literal ¬p

that occurs in c.
We let H = {Trueprop(p) | p occurs in ϕ}, where
Trueprop is a fresh class name. The set C contains the fol-
lowing constraints:

Trueform ↔ ∀hasClause.Trueclause

Trueclause ↔ ∃hasLit .Truelit

Truelit ↔ Trueprop ∨ ∃isNeg .¬Trueprop

Finally, we define T = {Trueform(root)}. This finishes
the construction of Ψ. We define the explanation (A,D)
obtained fromM by lettingD = ∅ andA = {Trueprop(p) |
p ∈M}. It is not hard to see that (A,D) is a ⊆-explanation
for Ψ iff M is a minimal-model of ϕ.

We do not know the data complexity of deciding rele-
vance and necessity in the presence of non-recursive con-
straints. The proofs of their lower bounds in the recursive
setting exploit recursive constraints to traverse a linear or-
der. It remains to be seen whether alternative reductions can
be found, or whether non-recursiveness leads to a drop in
data complexity. In the next section we observe, however,
that such a drop does not happen if we restrict the signature
of the explanations.

5.2 Explanations over Restricted Signatures
A user may want to guide the explanations by specifying that
data about certain class or property names in the data graph
is correct and thus should not be affected by repairs (read-
only). More generally, for a given class or property name a
user may want to consider only additions of facts (add-only),
or only deletions of facts (delete-only). As a result of such
specification, some undesired explanations may be filtered
out. This more general setting is discussed next.
Definition 4 (Σ-SEP). Let Ψ = (G,C, T,H) be a SEP, let
ΣA, ΣD be finite sets of class and property names. We call
ΨΣ = (G,C, T,H,ΣA,ΣD) a Σ-SEP. An explanation for
ΨΣ is an explanation (A,D) for Ψ, where A, D do not use
class and property names from ΣA and ΣD, respectively.

We observe that a SEP is a special case of a Σ-SEP, where
ΣA = ΣD = ∅. Therefore, all the lower bounds proved in
Sections 4 and 5.1 hold also for Σ-SEPs. The upper bounds
can be easily modified to additionally check whether a given
explanation conforms with ΣA and ΣD.
Theorem 9. All complexity results for SEPs obtained in the
previous sections also hold for Σ-SEPs.

We observe next that the more general setting of Σ-SEPs
can be simulated in the original setting of SEPs. The prohi-
bition of additions via a set ΣA can be simulated by properly
choosing the set H of hypothesis. The more tricky part is to
simulate the prohibition of deletions that are given by a set
ΣD. This can be simulated in original SEP in polynomial
time, but using recursive constraints. To prohibit removal
of atoms over ΣD in explanations, we can perform similar
tricks as in the proof of Theorem 3. In a nutshell, we mod-
ify the input data graph by adding fresh atoms that enforce a
linear order over the atoms that use signature from ΣD, and
add constraints that enforce the traversal of this linear order.
Lemma 1. Let ΨΣ be a Σ-SEP. Then, there exists a SEP
Ψ over recursive SHACL such that (A,D) is an explanation
for Ψ iff (A,D) is an explanation for ΨΣ.

We next present our results for the data complexity of rea-
soning over Σ-SEPs with non-recursive constraints. These
results cover most of the problems, including some for
which we left open the data complexity without signature
restrictions (see the last paragraph of Section 5.1). Those

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

19

gaps are a consequence of our use of recursive constraints
to prohibit the deletion of certain atoms, but this can be
done easily—with no need for recursion—if we restrict the
deletion signature. For non-recursive Σ-SEPs we only leave
open ≤-RELADD and ≤-RELDEL, for which the hardness
proofs of Section 4 use recursion to traverse the clauses of
a formula, and we do not know yet whether the absence of
recursion may cause a drop in complexity.

Theorem 10. SEPs over recursive SHACL and Σ-SEPs over
non-recursive SHACL have the same data complexity for (�
)-EXIST, (⊆)-NECADD, (⊆)-NECDEL, (⊆)-RELADD, and
(⊆)-RELDEL.

Proof (Sketch). The upper bounds follow from Theorem 9.
We briefly discuss the lower bounds.

To show NP-hardness for EXIST, we reduce the problem
of checking whether a 3-CNF formula has a model and use
the construction provided in the proof of Theorem 8 with a
small modification. For a formula ϕ, we construct a Σ-SEP
ΨΣ = (G,C, T,H,ΣD, ∅), where G,C, T,H are defined
as in the proof of Theorem 8. To prohibit deletions from
G we set ΣD to be the set of all class and property names
occurring inG. It is easy to see that ϕ has a model iff ΨΣ has
an explanation. This shows that EXIST is NP-complete. The
result for EXIST together with Proposition 1 and Proposition
2 readily imply results for most of the other problems: (a)
⊆-EXIST and ≤-EXIST are NP-complete, (b) RELADD and
RELDEL are NP-complete, and (c) NECADD, NECDEL, ⊆-
NECADD, and ⊆-NECDEL are coNP-complete. Note that
the reductions for Proposition 2 are such that if the input
instance is non-recursive then so is the target instance. It is
left to argue the results for ⊆-RELADD and ⊆-RELDEL.

The ΣP
2 lower bound for ⊆-RELADD can be shown by

reducing the problem of deciding whether an atom p belongs
to some ⊆-minimal model of a 3-CNF formula ϕ. To this
end, we can use the same ΨΣ described above for EXIST.
It is easy to see that p belongs to a ⊆-minimal model of ϕ
iff Trueprop(p) belongs to some ⊆-minimal explanation for
ΨΣ. For ⊆-RELDEL, we reduce the problem of checking
whether a variable p is not in a subset-maximal model of a
formula ϕ. We construct Ψ′Σ = (G′, C, T, ∅,ΣD, ∅), where
G′ = G ∪H , and G, H , C, T are as in ΨΣ. It is easy to see
that p is not in a subset-maximal model of ϕ iff Trueprop(p)
is deleted in a ⊆-explanation for Ψ′Σ.

6 Discussion
Richer Targets In this paper, the targets in a SHACL doc-
ument (C, T) are shape atoms of the form s(c). The SHACL
standard also describes validation targets that are specified
using class and property names. Concretely, given a graph
G, we may be required to validate a shape name s at every
node that is an instance of a class B (or, in the domain or in
the range of some given property p). All the upper bounds
of this paper can be immediately updated to this richer set-
tings. We only remark here that in this setting it is important
to recompute the targeted nodes after an update is applied.
For an example, consider a graph G = {B(c), p(c, d)}, a
constraint set C = {s ↔ ∃p.B}, and let T = {B}, i.e.,

we want every instance of B to validate the shape name s.
Since c is an instance ofB, we may consider addingB(d) to
G as a repair so that a validates the shape name s. However,
this does not fully repair G, because adding B(d) to G now
requires also d to validate the shape name s.

Unrestricted H Recall that a SEP includes a set H of
atoms that are allowed to be added to the input graph. The
set H of hypothesis may be omitted from the input SEP
whenever H is viewed as the set of all atoms over the class
names, property names, and nodes that explicitly occur in
the input graph G. Another natural option is to assume that
such H is simply the set of all possible atoms, which would
allow unrestricted introduction of fresh nodes into the in-
put graph. In such setting, finding an explanation for a SEP
Ψ = (∅, C, T) corresponds to checking satisfiability of a
SHACL document (C, T), which is known to be undecid-
able (Pareti et al. 2020). The undecidability proof in (Pareti
et al. 2020) is for non-recursive constraints but using class
targets, which can be easily updated for recursive constraints
with atom-based targets. This means that EXIST is undecid-
able, which also extends to all other problems discussed here
except �-ISEXPL. The proof in (Pareti et al. 2020) exploits
interactions between complex path expressions and num-
ber restrictions, which is a known dangerous combination
in DLs. It remains to be seen if fragments of constraints can
be identified where the reasoning services discussed here re-
main decidable, even if arbitrary atoms can be added during
repairs. Some promising results exploring the connection to
DLs have appeared in (Leinberger et al. 2020).

7 Conclusion
In this paper, we have provided an initial study of the prob-
lem of explaining non-validation in SHACL. We did not ex-
plicitly consider blank nodes, but since SHACL treats blank
nodes as unique objects, they do not require special treat-
ment (as long as no RDF entailment is considered, which the
SHACL standard, however, leaves optional/undefined). Fol-
lowing intuitions from areas like explaining negative query
answers in ontology-based data access, database repairs, and
more broader areas like abductive reasoning and counterfac-
tuals, we proposed that non-validation is explained by means
of repairs to the offending graph. As an initial step towards
an actual implementation of explanation services, in this pa-
per we have defined a collection of reasoning tasks and pro-
vided a detailed overview of their computational complexity.
We are currently working on an implementation of some of
these reasoning services, employing tools from Answer Set
Programming; this work will be presented in the future.

The notion of (minimal) repairs considered in this paper
does not take into account the possible user preferences re-
garding additions or deletions of concrete facts. E.g., a user
might prefer deletions of facts that are older or are com-
ing from less reliable sources. Such setting has led, e.g.,
to the notions of global, Pareto and completion optimality
of repairs (Staworko, Chomicki, and Marcinkowski 2012).
Adapting these and other notions (see (Bertossi 2019)) to
SHACL is an important task for future work.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

20

Acknowledgements
This work was partially supported by the Vienna Busi-
ness Agency and the Austrian Science Fund (FWF) projects
P30360 and P30873. Axel Polleres’ work is supported by
funding in the European Commission’s Horizon 2020 Re-
search Programme under Grant Agreement Number 957402.

References
Andresel, M.; Corman, J.; Ortiz, M.; Reutter, J. L.;
Savkovic, O.; and Šimkus, M. 2020. Stable model seman-
tics for recursive SHACL. In Proc. of The Web Conference
2020, WWW ’20, 1570–1580. ACM.
Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Con-
sistent query answers in inconsistent databases. In Proc. of
PODS, 68–79. ACM Press.
Bertossi, L. E. 2019. Database repairs and consistent query
answering: Origins and further developments. In Proc. of
PODS 2019, 48–58. ACM.
Calvanese, D.; Ortiz, M.; Simkus, M.; and Stefanoni, G.
2013. Reasoning about explanations for negative query an-
swers in DL-Lite. J. Artif. Intell. Res. 48:635–669.
Ceylan, İ. İ.; Lukasiewicz, T.; Malizia, E.; Molinaro, C.; and
Vaicenavicius, A. 2020. Explanations for negative query
answers under existential rules. In Proc. of KR 2020, 223–
232.
Corman, J.; Florenzano, F.; Reutter, J. L.; and Savkovic, O.
2019. Validating shacl constraints over a sparql endpoint. In
ISWC. Springer.
Corman, J.; Reutter, J. L.; and Savkovic, O. 2018. Semantics
and validation of recursive SHACL. In Proc. of ISWC’18.
Springer.
Eiter, T., and Gottlob, G. 1993. Propositional circumscrip-
tion and extended closed-world reasoning are ΠP

2 -complete.
Theor. Comput. Sci. 114(2):231–245.
Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. J. ACM 42(1):3–42.
Franconi, E.; Ibáñez-Garcı́a, Y. A.; and Seylan, I. 2011.
Query answering with DBoxes is hard. Electr. Notes Theor.
Comput. Sci.
Gayo, J. E. L.; Prud’hommeaux, E.; Boneva, I.; and Kon-
tokostas, D. 2017. Validating RDF Data. Synthesis Lectures
on the Semantic Web: Theory and Technology. Morgan &
Claypool Publishers.
Leinberger, M.; Seifer, P.; Rienstra, T.; Lämmel, R.; and
Staab, S. 2020. Deciding SHACL shape containment
through description logics reasoning. In Proc. of ISWC
2020, volume 12506 of Lecture Notes in Computer Science,
366–383. Springer.
Lutz, C.; Seylan, I.; and Wolter, F. 2013. Ontology-
based data access with closed predicates is inherently in-
tractable(sometimes). IJCAI/AAAI.
Ngo, N.; Ortiz, M.; and Simkus, M. 2016. Closed predicates
in description logics: Results on combined complexity. In
Proc. of KR, 237–246. AAAI Press.

Pareti, P.; Konstantinidis, G.; Mogavero, F.; and Norman,
T. J. 2020. SHACL satisfiability and containment. In
Proc. of ISWC 2020. Springer.
Staworko, S.; Chomicki, J.; and Marcinkowski, J. 2012.
Prioritized repairing and consistent query answering in rela-
tional databases. Ann. Math. Artif. Intell. 64(2-3):209–246.
Van Harmelen, F.; Lifschitz, V.; and Porter, B. 2008. Hand-
book of knowledge representation. Elsevier.
Wagner, K. W. 1987. More complicated questions about
maxima and minima, and some closures of NP. Theor. Com-
put. Sci. 51:53–80.

Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning
Main Track

21

	Introduction
	Preliminaries
	Explaining Non-Validation in SHACL
	Complexity of Decision Problems
	Complexity Results

	Further Results
	Non-Recursive SHACL
	Explanations over Restricted Signatures

	Discussion
	Conclusion

