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Abstract
The increasing interconnection of Information Technology and Operational Technology in Industry 4.0
creates new challenges and requires new approaches to ensure that production processes are executed
safely and securely. Production system safety and security have therefore become critical aspects as
security incidents can lead to serious problems such as production failure, equipment damage, or human
injury. This paper introduces a knowledge-graph-based framework for safety and security analysis that
integrates prior work on product, process, and resources (PPR) as well as cause-effect modeling. To
identify possible attack chains and their impact on safety issues, we leverage Bayesian Belief Networks
to estimate failure probabilities and propagate them through the knowledge graph. We evaluate our
approach by means of a real-world manufacturing use-case.
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1. Introduction

Security in the production system domain is a critical aspect necessary to maintain reliability
and ensure safety during the production process [1]. However, the convergence of Information
Technology (IT) and Operational Technology (OT) and their connection in production systems
have opened new attack vectors that make them more vulnerable to cyber-attacks [2]. IT
infrastructure can increasingly serve as the initial point of attack and cause production system
failures and safety issues (e.g., equipment/component damage and human injury).
For example, a Safety Instrumented System (SIS) may be attacked via exploiting IT-based

vulnerabilities. As a result, the manipulated SIS cannot react when needed, or the execution
of its safety function occurs in the wrong timeframe. This situation may cause people to be
injured or harmed (e.g., while interacting with a machine) or damage the production facility or
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plant. Furthermore, it is possible to trigger safety functions intentionally. As a consequence,
the attacked production line or machine line stops its operation, impacting the availability
negatively while causing economic damage [3]. Additionally, cyber-attacks may be launched
against user interfaces (e.g., web applications) controlling safety functions, potentially impacting
human safety over this attack vector when exploited [4, 5]. Therefore and based on the examples,
there is the need for a holistic view of safety and security.

Keeping track of the production system state and recognizing such unexpected attacks is an
increasingly complex problem. This is due to the heterogeneous nature of resources and compo-
nents as well as the isolated design of functional safety and security in production systems [1].
Furthermore, different views of engineering experts (e.g., mechanical and automation experts)
increase the gap in safety and security coverage and consequently make security and safety
analysis increasingly difficult. Several approaches exist to address safety and security [6, 7, 8].
However, there is a need to develop a standardized approach, generic tools, and a framework that
effectively combines security and safety in a production system context while offering flexibility
and feasibility [6]. In this paper, we therefore introduce a Knowledge Graph (KG)-based
framework for safety and security analysis in production system environments (cf.
Fig. 1). We build on prior work [7] and develop a standards-based model based on an RDF/OWL
ontology to construct knowledge graphs 1⃝ 2⃝. To analyze the generated KGs, we leverage
Bayesian Belief Networks (BBNs) [6] 3⃝ to identify possible failures and propagate them through
the KG 4⃝ 5⃝.

2. Our Approach

In prior work [7], we introduced the PPRModel which establishes links between Product, Process,
Resource (PPR) in a production system environment and Failure Cause-Effect relationships.
The PPR model comprises three fundamental concepts in production environments and their
connections within a production network, i.e., (i) Products, such as input or output as resulting
from the production process, (ii) Processes, such as activities performed to accomplish a certain
task, and (iii) Resources, such as components utilized by the process to execute tasks. The
Cause-Effect network represents the existing knowledge of cause-effect relationships curated
by experts.
Example Scenario. Fig. 2 depicts a Collaborative Robot (Cobot) Hazard scenario [7] represented
in a Cause-Effect-PPR Model. It involves the risk of a cyber-attack causing harm to humans
working with robots in a car part production environment. Therefore, the Products produced
in this scenario are car parts. The production systems involve several resources including OT
resources (e.g., cobot, force sensor, and a light-barrier), Control/IT resources (e.g, workstations
and a process engine/PLC) and Human resources such as operators and security engineers.
These resources perform tasks in the production Processes, such as ”unloading parts” (performed
by a cobot) and a ”human inspection” – which is carried out by the operator. Finally, the
Cause-Effect part of the model represents production knowledge pertaining to production and
security-related causes and effects.
Safety and Security Issues. In our example scenario, a security incident occurs because the
attacker successfully compromises the workstation by uploading malicious software. It allows



Figure 1: KG-Based SafeSec
Framework Architecture.

Figure 2: Cobot Hazard Scenario represented in
Cause-Effect-PPR Model.

the attacker to manipulate the Cobot Controller and change the collaborative mode to ”inactive”
while displaying a manipulated state message (”ON” mode). Given that the cobot controller is
connected to the cobot, this raises a high risk of an incident wherein the operator can be struck
by the cobot and sustain injuries.
Model Conceptualization and KG-Construction. To represent the relevant Cause-Effect-PPR
knowledge, we developed an ontology based on RDF/OWL. To this end, we followed established
ontology engineering practices [9]. We first conducted a survey of existing ontologies and
identified [10] as a candidate for cause-effect modeling and the VDI 32681 standard as a basis
for our PPR representations. Fig. 3 shows our integrated Cause-Effect-PPR ontology. To link
knowledge from these domains and coordinate investigations, we introduced a common general
concept, i.e., Characteristic, which defines characteristic values from both Cause-Effect and
PPR elements. It has a self-dependency link identified by the hasCharacteristic property and a
dependency link to the FailureMode concept. Due to space constraints, we do not explain the
full ontology in detail but refer the interested reader to the related documentation2. Listing 1
shows an excerpt of RDF instance constructed from the proposed ontology.

Figure 3: Integrated Cause-Effect-PPR Ontology.

1VDI 3682: VDI guideline 3682: Formalised process descriptions (2005)
2Ontology Representation: http://w3id.org/acdp/onto/fpi

http://w3id.org/acdp/onto/fpi


Listing 1: an Excerpt of RDF instance.
1 @prefix fpi : <http://w3id.org/acdp/onto/fpi#> .
2 @prefix : <http://w3id.org/acdp/res#> .
3 :PLC-1 a fpi:ControlResource, fpi:TechnicalResource;
4 fpi:hasCharacteric :OperatingMode;
5 fpi:hasFunctionalLink :Cobot-1.
6 :Cobot-1 a fpi:OperationalResource; ...

Listing 2: RDF Instance with BBN probability.
@prefix bbn : <http://w3id.org/acdp/onto/bbn#> .
@prefix : <http://w3id.org/acdp/res#> .
:PLC-1 a bbn:Node.
<< :PLC-1 bbn:fail true >> bbn:probability 0.7 .
<< :PLC-1 bbn:fail false >> bbn:probability 0.3 .
:Cobot-1 a bbn:Node; ...

KG-based Bayesian Belief Network (BBN) propagation. BBNs are probabilistic models that
represent and analyze relationships between variables through conditional probability distribu-
tions. They have been investigated extensively in academia and adopted in industry as a method
to tackle safety and security challenges in manufacturing [6]. We propose to combine KGs’
ability to represent safety- and security-relevant domain knowledge with the ability of BBNs to
capture probabilistic relationships. By propagating probability information throughout the KG
structure, we leverage BBNs for probabilistic reasoning in knowledge graphs. Integrating BBNs
into KGs offers several advantages: (i) By making BBNs queryable, they can be enriched and con-
textualized with domain knowledge from the KG, (ii) BBNs enhance KGs by providing advanced
probabilistic reasoning and inference capabilities. In this context, BBNs can support a KG in ana-
lyzing the potential impact of safety and security issues, and finding root causes. Listing 2 depicts
an example of such a BBN-KG integration. Here, the probability of :PLC-1 failing is quanti-
fied through RDF-star statement as << :PLC-1 bbn:fail true >> bbn:probability 0.7 .
Throughout the KG network, these probability scores are propagated.

3. Preliminary Evaluation and Conclusions

Use-Case Evaluation. Following the scenario described in Section 2, an analyst may
need to identify the root cause of a safety incident. Our approach enables the ana-
lyst to start the root cause analysis by formulating a SPARQL query as shown in List-
ing 3. The query traces backward through the KG via ^fpo:hasFunctionalLink* start-
ing from the identified Operator Health Hazard. To find relevant node chains associ-
ated with the safety issue, a filter can be applied to trace back and filter the desired
nodes with high probability, e.g., << ?o bbn:fail true >> bbn:probability ?val2. and
filter (?val >= 0.5 \&\& ?val2 >=0.5). Fig. 4 shows a sub-graph representing the iden-
tified and selected nodes chaining associated with the safety incident (note that different node
colors show different types of resources). It shows that an attacker managed to bypass the
corporate firewall 1⃝ and launch malicious software that compromised the cobot programming
software on the workstation 2⃝. From there, the attacker gains access to the cobot 3⃝ via a
switch connected to PLC and manipulates them 4⃝.
Conclusion and Outlook. In this paper, we introduce a method that represents, constructs and
analyzes safety and security in production systems by means of a KG and BBN method. The
evaluation result shows high practical relevance as the proposed approach effectively performs
safety and security analysis. For future work, we plan to evaluate our approach in a real-world
setting and link the identified attack to the existing attack pattern.



Listing 3: SPARQL Query - Backward Search.

1 PREFIX bbn: <http://w3id.org/acdp/onto/bbn#> .
2 PREFIX fpi: <http://w3id.org/acdp/onto/fpi#> .
3 PREFIX : <http://w3id.org/acdp/res#> .
4 CONSTRUCT {?s ?p ?o}
5 WHERE {:Operator ^fpi:hasFunctionalLink* ?o.
6 ?s ?p ?o.
7 << ?s bbn:fail true >> bbn:probability ?val.
8 << ?o bbn:fail true >> bbn:probability ?val2.
9 FILTER (?val >= 0.5 && ?val2 >=0.5)}

Figure 4: Constructed Graph Visualization.
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